Java IO编程全解(五)——AIO编程-编程思维

  转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/7794151.html 

  前面讲到:Java IO编程全解(四)——NIO编程

  NIO2.0引入了新的异步通道的概念,并提供了异步文件通道和异步套接字通道的实现。异步通道提供两种方式获取操作结果。

  • 通过java.util.concurrent.Future类来表示异步操作的结果;
  • 在执行异步操作的时候传入一个java.nio.channels。

  CompletionHandler接口的实现类作为操作完成的回调。

  NIO2.0的异步套接字通道是真正的异步非阻塞I/O,它对UNIX网络编程中的事件驱动I/O(AIO),它不需要通过多路复用器(Selector)对注册的通道进行轮询操作即可实现异步读写,从而简化了NIO的编程模型。

  下面通过代码来熟悉NIO2.0 AIO的相关类库,仍旧以时间服务器为例程进行讲解。

 1.AIO创建的TimeServer源码分析

package joanna.yan.aio;

public class TimeServer {

    public static void main(String[] args) {
        int port=9090;
        if(args!=null&&args.length>0){
            try {
                port=Integer.valueOf(args[0]);
            } catch (Exception e) {
                // 采用默认值
            }
        }
        
        AsyncTimeServerHandler timeServer=new AsyncTimeServerHandler(port);
        new Thread(timeServer,"AIO-AsyncTimeServerHandler-001").start();
    }
}
package joanna.yan.aio;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.util.concurrent.CountDownLatch;

public class AsyncTimeServerHandler implements Runnable{
    private int port;
    CountDownLatch latch;
    AsynchronousServerSocketChannel asynchronousServerSocketChannel;
    
    public AsyncTimeServerHandler(int port){
        this.port=port;
        try {
            //创建一个异步的服务端通道AsynchronousServerSocketChannel
            asynchronousServerSocketChannel=AsynchronousServerSocketChannel.open();
            asynchronousServerSocketChannel.bind(new InetSocketAddress(port));
            System.out.println("The time server is start in port: "+port);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void run() {
        /*
         *初始化CountDownLatch对象。 
         *它的作用是,在完成一组正在执行的操作之前,允许当前的线程一直阻塞。
         *在本例中,我们让线程在此阻塞,防止服务器执行完成退出。
         *在实际项目应用中,不需要启动独立的线程来处理AsynchronousServerSocketChannel,这里仅仅是个demo演示。
         */
        latch=new CountDownLatch(1);
        doAccept();
        try {
            latch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    /**
     * 接收客户端的连接。
     * 由于这里是异步操作。我们可以传递一个CompletionHandler<AsynchronousSocketChannel,? super A>类型
     * 的handler实例接收accept操作成功的通知消息
     */
    public void doAccept() {
        asynchronousServerSocketChannel.accept(this, new AcceptCompletionHandler());
    }
}
package joanna.yan.aio;

import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
/**
 * 接收accept操作成功的通知消息
 * @author Administrator
 *
 */
public class AcceptCompletionHandler implements CompletionHandler<AsynchronousSocketChannel,AsyncTimeServerHandler>{

    @Override
    public void completed(AsynchronousSocketChannel result,
            AsyncTimeServerHandler attachment) {
        /*
         * 疑惑:既然已经接收客户端成功了,为什么还要再次调用accept方法呢?
         * 原因:当我们调用AsynchronousServerSocketChannel的accept方法后,如果有新的客户端连接接入,
         * 系统将回调我们传入的CompletionHandler实例的completed方法,表示新的客户端已经接入成功,
         * 因为一个AsynchronousServerSocketChannel可以接收成千上万个客户端,所以我们需要继续调用它的accep方法,
         * 接收其他的客户端连接,最终形成一个循环。
         * 每当接收一个客户读连接成功之后,再异步接收新的客户端连接。
         */
        attachment.asynchronousServerSocketChannel.accept(attachment, this);
        ByteBuffer buffer=ByteBuffer.allocate(1024);
        /*
         * 参数一:接收缓冲区,用于从异步Channel中读取数据包;
         * 参数二:异步Channel携带的附件,通知回调的时候作为入参使用;
         * 参数三:接收通知回调的业务handler
         */
        result.read(buffer, buffer, new ReadCompletionHandler(result));
    }

    @Override
    public void failed(Throwable exc, AsyncTimeServerHandler attachment) {
        exc.printStackTrace();
        attachment.latch.countDown();
    } 
}
package joanna.yan.aio;

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.Date;
/**
 * 主要用于读取半包消息和发送应答。
 * 本例不对半包读写进行具体说明,在后面的Netty半包处理中会介绍。
 * @author Administrator
 *
 */
public class ReadCompletionHandler implements CompletionHandler<Integer, ByteBuffer>{
    
    private AsynchronousSocketChannel channel;
    
    public ReadCompletionHandler(AsynchronousSocketChannel channel){
        if(this.channel==null){
            this.channel=channel;
        }
    }

    @Override
    public void completed(Integer result, ByteBuffer attachment) {
        //为后续从缓冲区读取数据做准备
        attachment.flip();
        byte[] body=new byte[attachment.remaining()];
        attachment.get(body);
        
        try {
            String req=new String(body, "UTF-8");
            System.out.println("The time server receive order : "+req);
            String currentTime="QUERY TIME ORDER".equalsIgnoreCase(req) ? 
                    new Date(System.currentTimeMillis()).toString() : "BAD ORDER";
            doWrite(currentTime);
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        }
    }

    /**
     * 发生异常的时候调用。
     * 对异常Throwable进行判断,如果是I/O异常,就关闭链路,释放资源;
     * 如果是其它异常,按照业务自己的逻辑进行处理。
     * 本例作为简单demo,没有对异常进行分类判断,只要发生了读写异常,就关闭链路,释放资源。
     */
    @Override
    public void failed(Throwable exc, ByteBuffer attachment) {
        try {
            this.channel.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    
    private void doWrite(String currentTime) {
        if(currentTime!=null&&currentTime.trim().length()>0){
            byte[] bytes=currentTime.getBytes();
            ByteBuffer writeBuffer=ByteBuffer.allocate(bytes.length);
            writeBuffer.put(bytes);
            writeBuffer.flip();
            
            channel.write(writeBuffer, writeBuffer, new CompletionHandler<Integer, ByteBuffer>() {

                @Override
                public void completed(Integer result, ByteBuffer buffer) {
                    //如果没有发送完成,继续发送
                    if(buffer.hasRemaining()){
                        channel.write(buffer, buffer, this);
                    }
                }

                @Override
                public void failed(Throwable exc, ByteBuffer attachment) {
                    try {
                        channel.close();
                    } catch (IOException e) {
                        //ingnore on close
                    }
                }
            });
        }
    }
}

2.AIO创建的TimeClient源码分析

package joanna.yan.aio;

public class TimeClient {
    public static void main(String[] args) {
        int port=9090;
        if(args!=null&&args.length>0){
            try {
                port=Integer.valueOf(args[0]);
            } catch (Exception e) {
                // 采用默认值
            }
        }
        
        /*
         * 通过一个独立的I/O线程创建异步时间服务器客户端handler。
         * 在实际项目中,我们不需要独立的线程创建异步连接对象,因为底层都是通过JDK的系统回调实现的。
         */
        new Thread(new AsyncTimeClientHandler("127.0.0.1", port),"AIO-AsyncTimeClientHandle-001").start();
    
        /*
         * 需要指出的是,正如之前的NIO例程,我们并没有完整的处理网络的半包读写,在对例程进行功能测试的是还没有问题,
         * 但是,如果对代码稍加改造,进行压力或者性能测试,就会发现输出结果存在问题。
         * 这里只集中将NIO的入门知识,后面会详细讲到半包读写
         */
    }
}
package joanna.yan.aio;

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.CountDownLatch;

public class AsyncTimeClientHandler implements CompletionHandler<Void, AsyncTimeClientHandler>,Runnable{
    
    private AsynchronousSocketChannel client;
    private String host;
    private int port;
    private CountDownLatch latch;
    
    public AsyncTimeClientHandler(String host,int port){
        this.host=host;
        this.port=port;
        try {
            client=AsynchronousSocketChannel.open();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    
    @Override
    public void completed(Void result, AsyncTimeClientHandler attachment) {
        byte[] req="QUERY TIME ORDER".getBytes();
        ByteBuffer writeBuffer=ByteBuffer.allocate(req.length);
        writeBuffer.put(req);
        writeBuffer.flip();
        client.write(writeBuffer, writeBuffer, new CompletionHandler<Integer, ByteBuffer>() {//用于写操作完成后的回调

            @Override
            public void completed(Integer result, ByteBuffer buffer) {
                if(buffer.hasRemaining()){
                    client.write(buffer, buffer, this);
                }else{
                    ByteBuffer readBuffer=ByteBuffer.allocate(1024);
                    client.read(readBuffer, readBuffer, new CompletionHandler<Integer, ByteBuffer>(){//当读取完成被JDK回调时,构造应答消息。

                        @Override
                        public void completed(Integer result,
                                ByteBuffer buffer) {
                            buffer.flip();
                            byte[] bytes=new byte[buffer.remaining()];
                            buffer.get(bytes);
                            String body;
                            try {
                                body=new String(bytes, "UTF-8");
                                System.out.println("Now is : "+body);
                                latch.countDown();
                            } catch (UnsupportedEncodingException e) {
                                e.printStackTrace();
                            }
                        }

                        @Override
                        public void failed(Throwable exc, ByteBuffer attachment) {
                            try {
                                client.close();
                                //让AsyncTimeClientHandler线程执行完毕,客户端退出执行
                                latch.countDown();
                            } catch (IOException e) {
                                //ingnore on close
                            }
                        }   
                    });
                }
            }

            @Override
            public void failed(Throwable exc, ByteBuffer attachment) {
                try {
                    client.close();
                    latch.countDown();
                } catch (IOException e) {
                    //ingnore on close
                }
            }
        });
    }

    @Override
    public void failed(Throwable exc, AsyncTimeClientHandler attachment) {
        exc.printStackTrace();
        try {
            client.close();
            latch.countDown();
        } catch (IOException e) {
            //ingnore on close
        }
    }

    @Override
    public void run() {
        //创建CountDownLatch进行等待,防止异步操作没有执行完成线程就退出。
        latch=new CountDownLatch(1);
        /*
         * 参数二:AsynchronousSocketChannel的附件,用于回调通知时作为入参被传递,调用者可以自定义
         * 参数三:异步参数回调通知接口,由调用者实现。
         */
        client.connect(new InetSocketAddress(host, port), this, this);
        try {
            latch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        try {
            client.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

  异步SocketChannel是被动执行对象,我们不需要像NIO编程那样创建一个独立I/O线程来处理读写操作。对于AsynchronousServerSocketChannel和 AsynchronousSocketChannel,它们都由JDK底层的线程池负责回调并驱动读写操作。正因为如此,基于NIO2.0新的异步非阻塞Channel进行编程比NIO编程更为简单。

  后面,我们将对前面讲到的4种I/O进行概念澄清和比较,让大家从整体上掌握这些I/O模型的差异。以便在未来的工作中能够根据产品的实际情况选择合适的I/O模型。

 Java IO编程全解(六)——4种I/O的对比与选型

如果此文对您有帮助,微信打赏我一下吧~

版权声明:本文版权归作者所有,遵循 CC 4.0 BY-SA 许可协议, 转载请注明原文链接
https://www.cnblogs.com/Joanna-Yan/p/7794151.html

Netty(一)——Netty入门程序-编程思维

转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/7447618.html 有兴趣的可先了解下:4种I/O的对比与选型 主要内容包括: Netty开发环境的搭建 服务端程序TimeServer开发 客户端程序TimeClient开发 时间服务器的运行和调试 1.Netty开发环

Netty(二)——TCP粘包/拆包-编程思维

转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/7814644.html  前面讲到:Netty(一)——Netty入门程序 主要内容: TCP粘包/拆包的基础知识 没考虑TCP粘包/拆包的问题案例 使用Netty解决读半包问题 1.TCP粘包/拆包   TCP是个“流”协议

IO - Netty的核心模块-编程思维

 这篇博客主要简单介绍Netty上表中的组件 1. Bootstrap、ServerBootstrap Bootstrap意思是引导,一个Netty应用通常由一个Bootstrap开始,主要作用是配置整个Netty程序,串联各个组件,Netty中Bootstrap类是客户端程序的启动引导类,ServerBootstra

网络IO模型(BIO,NIO,AIO)-编程思维

网络IO模型 I/O 模型简单的理解:就是用什么样的通道进行数据的发送和接收,很大程度上决定了程序通信的性能.Java共支持3种网络编程模型/IO模式:BIO、NIO、AIO Java BIO : 同步并阻塞(传统阻塞型),服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这

Java IO编程全解(二)——传统的BIO编程-编程思维

前面讲到:Java IO编程全解(一)——Java的I/O演进之路   网络编程的基本模型是Client/Server模型,也就是两个进程之间进行相互通信,其中服务端提供位置信息(绑定的IP地址和监听端口),客户端通过连接操作向服务端监听的地址发起连接请求,通过三次握手建立连接,如果连接建立成功,双方就可以通过网络套接

单机百万连接调优和Netty应用级别调优-编程思维

作者:Grey 原文地址:单机百万连接调优和Netty应用级别调优 说明 本文为深度解析Netty源码的学习笔记。 单机百万连接调优 准备两台Linux服务器,一个充当服务端,一个充当客户端。 服务端 操作系统:CentOS 7 配置:4核8G IP:192.168.118.138 客户端 操作系统

图解 | 原来这就是 IO 多路复用-编程思维

为了讲多路复用,当然还是要跟风,采用鞭尸的思路,先讲讲传统的网络 IO 的弊端,用拉踩的方式捧起多路复用 IO 的优势。 为了方便理解,以下所有代码都是伪代码,知道其表达的意思即可。 Let's go   阻塞 IO 服务端为了处理客户端的连接和请求的数据,写了如下代码。 listenfd = socket();